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We investigate the problem of perfectly preserving a symmetry associated naturally
with one coordinate system when calculated in a different coordinate system. This
allows a much wider range of problems that may be viewed as perturbations of the
given symmetry to be investigated. We study the problem of preserving cylindrical
symmetry in two-dimensional Cartesian geometry and spherical symmetry in two-
dimensional cylindrical geometry. We show that this can be achieved by a simple
modification of the gradient operator used to compute the force in a staggered grid
Lagrangian hydrodynamics algorithm. In the absence of the supposed symmetry we
show that the new operator produces almost no change in the results because it is
always close to the original gradient operator. Our technique thus results in a subtle
manipulation of the spatial truncation error in favor of the assumed symmetry but
only to the extent that it is naturally present in the physical situation. This not only
extends the range of previous algorithms and the use of new ones for these studies,
but for spherical or cylindrical calculations it reduces the sensitivity of the results to
grid setup with equal angular zoning that has heretofore been necessary with these
problems. (© 1998 Academic Press

1. INTRODUCTION

An outstanding problem in computational physics is the exact preservation of a gi
one-dimensional symmetry in a coordinate system, distinct from that symmetry. Gener
if one wishes to maintain a given one-dimensional symmetry (cylindrical or spheric
for example) and perform perturbation studies from it in two or three dimensions if
usual to write the problem in terms of that coordinate system at the start. Thus one w
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NUMERICAL PRESERVATION OF SYMMETRY 175

use cylindrical or spherical coordinates to perform perturbation studies in more than |
dimension of problems possessing these symmetries. This makes that symmetry eas
recover inthe limitwhere the initial and boundary conditions, and possibly the energy sot
terms, are consistent with it. In this paper we investigate the problem of preserving exa
cylindrical or spherical symmetry in Cartesian or cylindrical coordinates, respectively,
two spatial dimensions. If achieved, this allows more flexibility in the study of certa
problems, for example in laser fusion applications, than can be attained with the direct
of cylindrical or spherical coordinates.

The organization of this paper is as follows: In Section 2 we give a quantitative explanat
of the problem of preserving a one-dimensional symmetry in a coordinate system diffel
from that symmetry. It is shown that the usual control volume scheme is not suitable
this purpose, except for cylindrical symmetry in Cartesian geometry with special, eqt
angle, initial zoning. Previous solutions to this problem, all of which are restricted to eqt
angle initial zoning, are also reviewed. Section 3 presents the major theoretical developr
wherein we show how the gradient operator that acts on the zone pressure to produc
nodal force can be slightly modified so that the mentioned symmetries are preserved witl
need to resort to very specialized numerical schemes or with the restriction of equal al
initial zoning. This is done by means of a circle construction through three points that yie
a simple formula that enables us to modify the edge vector lengths used in computing
pressure force. The important general idea is that straight lines need not be used to col
coordinate points and that curves of some nature that provide a subtle manipulation o
spatial truncation error can work better. This is done here in a manner that picks out
symmetric solution when present but gives very little difference in the solution when it
not; that difference remains at the truncation error level for a stable difference scheme.
limitations and additional concerns associated with this new form of the pressure grad
operator are given in Section 4. Issues such as the inclusion of an artificial viscosity
additional requirements that must be satisfied for symmetry preservation are discus
Section 5 presents numerical results intended to validate our claims with regard to
efficacy and accuracy of this new method to achieve the stated goals .The example:
chosen to demonstrate both the ability of the algorithm to capture symmetry when i
present and to still give accurate results when it is absent. The somewhat paradoxical i
of the absence of exact conservation of linear momentum that occurs with methods
preserve symmetry is also discussed. An appendix is included in which the problem of
preservation of symmetry is investigated in the instance when the force is derived frol
tensor, as occurs with material strength. Our conclusions are also briefly summarized.

2. STATEMENT OF PROBLEM AND PREVIOUS SOLUTIONS

Consider astaggered grid, Lagrangian, hydrodynamics scheme in which pressure, de
and specific internal energy are centered in the zones and coordinate position and vel
are defined on the points. We are concerned with botly) Cartesian geometry or,(2)
cylindrical geometry as indicated in Fig. 1. There we show an angular distribution
symmetric zonal pressure, with logidalines radially outward and logicatlines in the
angular direction forming a quadrilateral grid. We impose reflective boundary conditic
on both the horizontal and vertical axes. We are concerned with computing the force du
the symmetric pressure distribution at point tefined by the intersection of logical lines
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FIG. 1. Unequal angle grid for Cartesian or cylindrical geometry—coordinate line momentum control volum

(k, ). The logical lines k,” “k — 1" form an angle® and thoseK + 1,” “k” form an anglep

at the origin. Consider for now that we are in /) Cartesian geometry with an ignorafale
coordinate pointing out of the page. Then the physical situation shown, with a pressure
has only major radiuR = \/x2 + y2 dependence, should only produce radially cylindrica
motion. Consider the usual control volume scheme in Cartesian coordinates for compu
this force about point¢.” A momentum control volume is constructed about this poin
through the midpoints of the intersecting’“and “I” lines. These points are indicated by
asterisks in Fig. 1. Since the pressure is constant in a zone the force contribution due tc
zone at point£” depends only on the location of these side midpoints. This is convenient
given by the pressure of the zone times the outward normals of the two adjacent intersec
“k”and “I” lines with magnitudes equal to one half of the line segment lengths. We call tf
the corner force contribution to the point™from the given zone. The total force is just
the sum of the four corner forces about this point. For the symmetric situation conside
here thek-line contributions vanish. Thus defining the outward normal to the two respecti
I-lines asA andB with magnitudes equal to the lengths of the half edge line segnmeat$)(
and b — ¢), as shown in Fig. 1, this total force is

Fc = —(P1 — P))A — (PL— Py)B. 1)

At the point labeled ¢” in Fig. 1 we show the unit vectot that points along the radial
k-line. It is obvious that the forcE. at this point does not have this same direction unles
the vectordA andB have components normal &dhat are equal in magnitude and opposite
in sign. This will not occur unless the anglesind¢ are equal. It is this problem that this
paper addresses.

The solution to this difficulity is easily achieved in Cartesian geometry by always zo
ing this type of problem with equal angle setskslfines. This still leaves some concern
about sensitivity to source terms that perturb this symmetry since the errors obtainec
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unequal angle zoning are quite large, as will be seen. Thus, one worries whether the re
of perturbations to this symmetry are real or numerical. In cylindrical geometry where
wish to have spherical symmetry preserved this problem becomes much more severe.
consider Fig. 1 once again but for cylindrical £) geometry with an ignorable angle coor-
dinate about the-axis. With all else the same as before and for a control volume schel
in cylindrical coordinates, the force on poird™becomes

3r r 3r r
( 4+ 9 _ (p— B’ : 2)

Because the coordinate lines are revolved abour vds the surface area includes the
dependent factors seen in EqQ. (2) that depend on the coordinates of @diatsd*“e” on
adjacentk-lines. Sincer varies as the cosine of the angle with respect tortaeis this
scheme does not give a force aldhfipr the equal angle, or any other angle, zoning. Thus
the popular and usually very effective control volume differencing has been unsuited to
type of problem in cylindrical geometry.

Several techniques have been used in the past to circumvent this difficulty. The n
important of these are the so-called “area-weight” differencing and Petrov—Galerkin fir
element schemes that have appeared in a number of different forms over the years [1-4]
basic idea of these schemes is to cast the Cartesian control volume scheme into cylinc
geometry in the very simplest form so that it will still preserve spherical symmetry for eqt
angle zoning. To this end one gives up the true surface area of an edge and postulate
force on point t” to be

Fe=—-(PL—Po)A @)

Fc = —(PL — Po)Arc — (PL — Po)Bre. 3

Now only a common factar, appears in going from Eq. (1) in Cartesian geometry to Eq. (-
in cylindrical geometry. To obtain an acceleration for poicit e must divide the force
with a nodal mass associated with this point. For the area-weight schemes this nodal |
is defined as

Mc = re(0 Area)cs (4)

where the quantityp Area)c is the effective Cartesian inertia associated with paititThis
can be defined in a number of different ways; all of these amount to summing the z
density times some fraction of the zone area (a subzonal area) of all zones surroun
the given point. This fraction is sometimes taken to be one-quarter but can vary betw
different schemes (cf., Eq. (16)). The important point is that the common factancels
out on the two sides of the momentum equation giving a force that will be radial f
equal angle zoning. The internal energy change caused by these forces is usually calctL
using—PdV of a zone, whereV is the change of the cylindrical zone volume in a time
step. These schemes have many interesting properties (e.g., pointszeaxiedave zero
nodal mass but nonzero Cartesian inertia) that are systematically explored elsewhere [
(As opposed to area-weight differencing, control volume differencing can be viewed
“volume-weighted.”)

Another numerical scheme that has been used to overcome this problem calculates
arate accelerations for each edge between two nodes as

(ra+re)/2

=—(P,— P)B2 =/~
aedge ( 1 O) (MO+ Ml)

®)
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The subscripts “0” and “1” refer to the pressure and mass in the two zones adjacen
any particular edge; here, that is between poirisdnd “c” of Fig. 1. To get the total
acceleration on any given point one simply adds together all of the edge accelerations
are associated with that point. This scheme, termed “force gradients” [6, 7], has the pote
difficulty that if the initial zonal masses are widely disparate, any magnitude of accelerat
can be achieved and no composite form for the discrete gradient operator can be given.
scheme does preserve the desired symmetries in both cylindrical and Cartesian geon
but only for equal angle zoning.

3. MODIFICATION OF THE GRADIENT OPERATOR

It has been shown that the difficulty in preserving symmetry is due to the difference
the magnitudes of the components of the half-edge veét@sdB that lie normal to the
radial directiorg. It is these normal components that must be modified in some automa
manner such that symmetry will be preserved when it is present in the pressure field
boundary conditions of a physical problem. First, we note that the assumption of connec
nodes by straight lines to form edges that are line segments is not necessary. We coul
as well connect them by curves of some form, thus changing the definition of the zc
volume. From the Lagrangian assumption of zero flux of mass across these boundaries
effectively changes the discrete form of the divergence operator [5]. However, the diffict
here is not with the definition of the full edge between two nodal points but with the he
edges that comprise the gradient operator acting on the zone pressures. We now shov
the gradient operator can be modified so that the desired symmetries are preserved fo
angle zoning for either the area-weight scheme, Eq. (3), or the cylindrical control volul
scheme, Eq. (2), discussed earlier.

Consider a circle constructed through the three pomts't,” and “e” as given in Fig. 1.
We will assume that the origin of this circle lies at point Without loss of generality since
acircle can always be placed through any three points, albeit with infinite radius if colline
Because of the above assumption the triangles defined by poaate)@nd ©cbo of Fig. 1
are right triangles with opposite siddsandB to anglesp /2 andd /2, respectively. We now
define a vector

W = aA + bB, (6)

whose coefficienta andb are to be determined by the requirements tak ¢ =0 and
whose magnitude is to be equal|t& + BJ||. The unit vectoi€ points from the origin 6"
to point “c” and is the outward normal direction that we requiveto be parallel to. From
the above construction it is apparent thatx €| = Asin(¢/2) and||B x €|| = B sin(6/2),
where siri¢/2) = A/R, sin(0/2) = B/R, R is the circle radiusdc), A and B are the
magnitudes of the respective vectors. Using this in Eq. (6) yields

B A
W=|-A+-B). 7
(a2 +58) ™
Since itis the direction ofV, defined asv; that lies parallel t& when symmetry is present
we have that
B2A + A’B

N :é:— 8
v IB2A + A2B] ®)
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In symmetric flow, where we have the same pressure differ@Pice Py) across the sides
A andB we require that the total force act in the directwraind on an aref(A + B) - w||
which, as we shall show, matches the magnitude of the nodal mass to within factors
are independent of angle so that the acceleration will have a magnitude constant alor
I-line. We arrange this by modifying the vectér&ndB so that their components normal to
w, as given by Eq. (8), cancel while usingas a projection operator to select their parallel
components and leave them unchanged. To this end we define

AL =A—®@- A, ()]
B, =B — (b - B)d, (10)
CL=AL—-By/2 (11)

We have substracted the normal componenrB dfom thatA, since these are always of
opposite sign, and simply averaged them to ob@ainwhich becomes the modified normal
component of. We now add and substract this vector to the unchanged parallel componge
of A andB to obtain the modified half-edge vector lengths of the new gradient operat
A andBy, as

An=A -0)w+C,

1 o
= SA+B) B+ (A-B)),

1
=A-S(AL+BY), (12)

Bn=B -v)w—-C,

1
S(A+B) Wl —(A—B)),

1
B—J(AL+B)), (13)
from which it follows immediately that
(Am+Bm) =[(A+B) - w]w, (14)

if the pressure distribution is symmetric. Note that we obtain the identity transformatior
eitherA; = —B_, which is the case aloriglines for equal angl&-line zoning in Cartesian
geometry, or foA | andB, individually zero, as is the case along the stralghibhes shown

in Fig. 1.

Now the force as given by either Eq. (1) for Cartesian geometry or Eq. (3) for the ar
weight scheme in cylindrical geometry is unchanged except that the vector half-edge len
Am andBp, are used in place ok andB. For the force defined by Eq. (2) for a control
volume scheme in cylindrical geometry, the direction veetan Eq. (8) is defined with
vectorsA andB as above. However, in the modification procedure Egs. (9)—(13) the ec
vectors are the true surface areas so ftiat A(3rc +re)/4 andB’ = B3rc +r,)/4 are
used in place of andB. With A’,, andB'y, defined in this manner the force for the control
volume scheme in cylindrical geometry has the form given by Eq. (1).
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By using Eq. (8) to directly rearrange the transformation given by Egs. (12)—(13) this ¢
be more elegantly written in matrix form as

Am 1 — A

B'm o 1-8 B’
where

_ (B B — AA) 2 A

=——wz (1+A-B/A )

_ (B B — AA)

1+A.-B/B?
W2 a+ /)B,,

W2 = A+ B2+ 2A - B.

For either the control volume scheme in Cartesian geometry or for the area-weight sch
in cylindrical geometry the factors of * become equal to unity and’ — A, B’ — B in
the above transformation that now holds for all cases Egs. (1), (2) and (3).

Next we show that the nodal mass has the dependgiice B) - w| when symmetry is
present so that the acceleration of differdnt [ points along a givefrline in Fig. 1 have
the same constant magnitude. Consider the corner edégd(shown in Fig. 1. This area
has been divided into two pieces: the rectangladfd and the right trianglegchg that is
similiar to the right triangledcdg. Defining R as the major radius lengtlog) on which
the points @,” “ ¢,” and “¢€” lie, (gc) as the length between pointg™and “c,” and using the
fact that(ch)/(cd) = (gc)/R, this corner area is given by

AREAcdfge = A - €[(0 — (90%/(2R)]. (16)

Sincet = w, this is the expression we seek. Similiar formulas hold for the other three corr
masses so that the angle-dependent quafitdy+ B) - w|| appears in composite form,
cancelling with a like piece in the total force on a node and resulting in an acceleration
is radial in direction with a magnitude that is constant along any diligre. This argument
also holds for the control volume scheme in cylindrical geometry, where the corner volur
are more complicated to compute.

So far we have concentrated only on the force contributions at#asss, since for a
symmetric pressure distribution tkdines contribute zero. For a problem without any given
symmetry thek-lines give a nonzero contribution to the acceleration of the node. We th
modify the half-edge lengths along tkdine at point ‘c,” with coordinatesk, I), in exactly
the same manner as for thdine given above. That is, we define a newbased on the
half-edgek-line lengths and proceed as before. For the case of straight lines as show
Fig. 1 this results in no change in this portion of the gradient operator sirsedétermined
from Eq. (8) will turn out to be normal to thke-line. Thus we have found an automatic
procedure for modifying the gradient operator that consists of independent sweeps a
logical “k” and “I” lines wherein the half-edge area vectors that define this operator &
slightly modified. For a quadrilateral we now have eightindependent vector lengths inst
of the usual four. For the case of points on an outer boundary-(ime boundary in
Fig. 1), where we have only two points for thdine part of the gradient modification, or
for other exceptional points where the character of the grid departs from a logical struct
we simply omit this procedure and leave these pieces of the gradient operator unchan



NUMERICAL PRESERVATION OF SYMMETRY 181

Inthe case where the grid departs from alogical structure, symmetry may not be obtain.
even in principle. Consider the grid as shown in Fig. 1 and suppose that we modify t
grid by allowing either &-line or anl-line to terminate at some interior point. To be
specific suppose that the segment(e) is omitted from the line labelled a$.” Then
at the point ¢t,” where this line terminates, one has pressUPesnd P, to the right of
the line labelled K,” but the pressure of the newly formed zone to the left of this line
can obviously not have either of these values and must be some average of the two.
forces perpendicular to the outward major radial direction cannot now possibly be zero
symmetry cannot be preserved. That is, the grid topology in this instance does not al
for the existence of a symmetric distribution of pressure and perfectly symmetric flow
fundamentally excluded. Now suppose that the line labellek’amFig. 1 terminates at
point “c” and does not continue to the origin." (This is useful to prevent highly elongated
zones near a center of convergence and a resulting unphysical decrease in timestep.) |
case a symmetric distribution of pressure is still possible and thus symmetric flow is ¢
obtainable in principle. However, to achieve this requires a very careful examination of b
the forces and masses that are associated with the now exceptionalgioint “

4. ADDITIONAL CONSIDERATIONS

In addition to defining the discrete gradient operator along coordinate lines, anot
way to represent it is via the median mesh construction shown in Fig. 2 about pdint *
There we show eight normal vectors to line segments that connect side midpoints to :
centers, the latter defined as the average of the coordinates of the zone points. The ¢
force associated with the lower right-hand zone that acts on poins“—Py(S; + ),
or equivalently,Py(B1 + By) if written along coordinate lines. As mentioned earlier, the
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FIG. 2. Unequal angle grid for Cartesian or cylindrical geometry—median mesh momentum control volum
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sum of these corner forces about poiat Will result in the total forceF; as given by
Egs. (1)-(3), where for the area-weight scheme a factgiisfnserted and for the cylindrical
control volume scheme, Eq. (2), the leng8idiave coordinate factors, already included.
(These are always the average dft the two defining endpoints of these eight segments
Before gradient modification, the coordinate line and median mesh representations of
gradient operator are identical. However, we cannot transform the modified form given al
coordinate lines to the median mesh and thereby obtain a median mesh representati
the pressure force that will preserve symmetry. To see this consider the four relations
connect the four median mesh, of a zone to the four original edge vectdss, of the same
zone, one of which i§; + S, = —(B1 + By). Because of the hourglass motion associate
with a quadrilateral grid [8] the matrix of this transformation is singular and it is thus n
possible to invert this relation to obtain tB& solely in terms of th&'s. So the new gradient
operator defined with respect to the coordinate lines cannot be directly transformed to
median mesh.

We next ask whether or not the procedure used along coordinate lines can simply be
directly to modify the gradient operator along the median mesh to obtain symmetry. Tha
we use Eq. (8) to define independantlifections for the pairs of lengths,, Sz), (Sa, Ss),
etc. and to proceed as before. This will work fine for the pé®s Sg), (Ss, S7); however,
the pairdS;, Sg), (S4, Ss) are collinear and this procedure results in no change in the portic
of the gradient operator due to these lines. This presents a problem since the piece of
—Po(S1 + Su), or —Py(Ss + Sg), is not in the radial direction and these contributions dc
not individually vanish. Thus the median mesh is not appropriate, in general, for gradi
operator modification. However, this is still a very useful procedure when subzonal press
are introduced into a quadrilateral zone [9]. Then with an appropriate representation of
pressure forces (they are decomposed into zone mean and perturbed contributions)
pairs that cause difficulties here will not contribute, and symmetric flow with subzon
pressure forces can be achieved by utilizing a combination of the median and coordil
line meshes in the force differencing. The definition and treatment of these forces is gi
elsewhere [9].

Itis not enough to specify a symmetric nodal acceleration in the radial direction to obt
the desired symmetry. The work done by the forces associated with that acceleration r
also yield a symmetric specific internal energy in zones with different volumes so tha
symmetric zonal pressure distribution is maintained in time. For the procedure given t
this is the case. We can evolve the specific internal energy equation with eifhdy
heating or by means of compatible heating [5]. In the latter case the new gradient oper
defines a new divergence operator. For the case of symmetric flow this is without error,
for other flows it shows little significant difference from the unmodified form, as will be
seen by the examples.

For convergent shock wave problems, as opposed to simple adiabatic expansion, we
to include some form of artificial viscosity. If we use a scalar artificial viscosityhat
enters just like a pressure but turns off in an expanding zone, then as lapndaes not
depend on any zone scale lengths it will have the same symmetry properties as the pre
field. (Theq in [1] is an example of this.) Then replacii®g with (P + q) will suffice.
However, a scalag that depends on zone scale lengths will generally violate symmet
requirements and is not suitable [10]. A simple scalar forngfoan give very poor results,
particularly on problems where a distinction between shock and adiabatic compres:
is needed. We have developed an edge-centered artificial viscosity that is independe
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grid parameters. This is used for the numerical calculations presented here. It has a si
tensor form and both a linear and a nonlinear part. It requires no special treatment to sa
symmetry conditions and is superior to scalar forms [11].

5. NUMERICAL RESULTS

In this section we show two sets of numerical examples with a twofold purpose. First,
wish to demonstrate the effectiveness of the new gradient operator to preserve the afore
tioned symmetries for the area-weight scheme with unequal angle zoning and for the col
volume scheme in cylindrical geometry for any angle zoning. Second, we wish to dem
strate that the new gradient operator causes very little change in the results when no syr
try is present in a given problem. All problems are run with an idealgas,5/3, equation
of state. Heating is done compatibly with total energy conserved to roundoff error [5].

We begin by considering the implosion problem of Lazarus [12], Guderley [13], at
Stanyukovich [14] for which there is a self-similiar solution. A sphere of unit initial radiu
with zero specific internal energy and unit density is driven by an inward radial veloc
given in good approximation by

—af

e = e

17)

wherea = 0.6883545 f = 1. — et — §t3, ¢ = 0.185, ands = 0.28. We use a grid of four
k-lines and 201-lines.

Figure 3a shows the grid using equal angle initial zoning and area-weight differenc
at a timet = 0.80 after the shock wave has reflected from the center of convergence an
moving outward into the already shocked medium. Symmetry is preserved as expecte
this scheme. In Fig. 3b we show results for this problem with the original gradient operz
using the control volume scheme with equal angle initial zoning in cylindrical geomet
att = 0.73 shortly before the code quits due to excessive grid distortion. This is due
the fact that this scheme does not preserve spherical symmetry in cylindrical geom
and shows why it has not been widely used to compute nearly spherical flow problems
Fig. 3c we show the grid for this problem utilizing the new gradient operator with tt
otherwise identical control volume scheme in cylindrical geometry &t 0.8, after the
shock wave has reflected off the origin. Symmetry is preserved to roundoff error, abou
decimal digits in both the density and specific internal energy on a 64-bit computer, jus
precisely as in Fig. 3a using area-weight differencing. In Fig. 3d we show the density ver
the major radius at three different timeés+ 0.74, 0.75, 0.80 as the dashed curves, as well
as the analytic solution @at= 0.74, 0.80 as solid curves. The shock wave arrives at th
origin just aftert = 0.75, and at this time the density should be flat. The humerical resul
are seen to lag in time by a small amount relative to the analytical solution; this decree
as mord-lines are added.

Results of this problem using unequal angle initial zoning for area-weight and cont
volume differencing, both with the modified pressure gradient operator, are given
Fig. 4. The initial grid consists &f-lines at 0, 18>, 27°, and 90 with respect to the-axis.
The grid at time = 0.80 is displayed in Fig. 4a and in Fig. 4b using modified area-weig!
and modified control volume differencing, respectively. These results are almost identi
Symmetry is preserved to roundoff error. The density as a function of major radius alor
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FIG. 4. (a) Lazarus implosion problem with unequal angle zoning. Grid=at0.80 using the area-weight
scheme—new gradient operator. (b) Lazarus implosion problem with unequal angle zoningt G¢il.80 using
the control volume scheme—new gradient operator. (¢) Lazarus implosion problem with unequal angle zor
density versus major radius. Solid curve-modified area-weight scherkdirads. Dashed curve—modified control
volume scheme, aK-lines.

k-line is shown in Fig. 4c, where the dashed line is the result using modified control volul
differencing; the result for area-weight differencing is the solid line that has a slightly low
peak value. Although six curves are actually drawn, only the single solid and dashed li
are visible since the separate sets of three agree to within 10 decimal digits. With this in
grid the code will crash very early in the run for any scheme without the new gradie
operator; therefore, these results are not displayed.

The following set of examples is aimed at showing that where symmetry is not pres
the new gradient operator does not impose it and, in addition, gives results very similia
that obtained with the unmodified form. We begin with an aspherical expansion problen
cylindrical geometry [15]. The initial conditions are a sphere with 11 equal datites
and 101l-lines with a major radius equal to 10. The specific internal energy is constant
0.9, but the initial density profile is given as

p(t = 0) = exp—0.5((2/2)% + (r/8)?). (18)

Reflective boundary conditions are applied on theghd “z” axes but the outermostiine

is a free boundary with zero exterior pressure. The higher density alonggtkie results in
an aspherical expansion of the initially spherical grid. In Figs. 5a, b we show the grid &
a contour plot of the density at= 10.0 using the area-weight scheme with an unmodifiec
gradient operator. For comparison the same results are given in Figs. 5c, d with the
gradient operator. These results are seen to be almost identical.
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(a) Aspherical expansion problem. Gridtat= 10.0 using the area-weight scheme with original
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the area-weight scheme with new gradient operator.
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Next we consider the Saltzman piston problem in cylindrical geometry [8, 16]. This te
problem is commonly used to access the difficulties of grid tangling and spurious vortic
[8, 9, 16]. It consists of 10k-lines dividing the unitz interval and skewed in the radial
direction with a half wavelength sinwave dependence, andlibes uniformly spaced on
a radial interval of 0.1 in length so that the initial zones have unit aspect ratio. The g
coordinates are thus given by

Mk = 0.01 % (| — 1),
Z¢) = 0.01% (k — 1) + 0.01% (11— 1) % Sin(0.01 % 7 (k — 1)).

Reflective boundary conditions are specified at 0.0 and at the upper boundary= 0.10.
These are applied in two different ways. A= 0.0 we reflect both the coordinates and the
velocity of thel = 2 line about the-axis so that = 0 corresponds to the center of these
zones. Thus, there are no dynamical points orethgis. This type of implementation of a
reflective boundary condition sometimes yields superior results relative to the more us
case where dynamical points are placed on the axis of symmetry [5]. At the upper bounc
r = 0.1 we simply set the radial velocity equal to zero in the more standard implementat
of this boundary condition. A piston with unit velocity from the right drives a shock into
cold medium with unit density. Figures 6a, b show the grid and a contour plot of the den:
att = 0.80 after the shock has hit the fixed wallat= 1.0 and has bounced part way
back toward the moving piston. The control volume scheme with the unmodified gradi
operator was used; the density should be 4.0 and 10.0 in the two regions and is clos
these values. In Figs. 6¢, d these same plots are shown using the new gradient ope
The differences between these results are again seen to be very small. In both calcula
shown in Fig. 6 subzonal corner pressures have been utilized [9].

The above piston problem run on a purely rectangular initial grid, as opposed to
skewed grid of Fig. 6, has been of much importance in the development of the new grad
operator given in this paper. In this case the velocity components that are perpendic
to w are at the level of roundoff error for bottrlines andl-lines. It was found that if
these perpendicular components are simply set to zero, instead of being made equ
magnitude, that an extremely virulent hourglass-type pattern develops from roundoff e
noise in regions that are behind the moving shock; this destroys the solution. Thus tt
perpendicular components are restored not only to make the new gradient operator as
as possible to the old one and still preserve symmetry, but also to prevent an enhal
sensitivity to spurious hourglass-type motions from occurring.

Awiderange of cases, in addition to those shown here, have been run with the new grac
operator versus the old for problems that either have no symmetry or with symmetry
using initial grids not oriented along the symmetry direction, and only small differenc
have been observed. We have thus demonstrated that the new gradient operator pro
changes that are minor, wherein the differences remain at the spatial truncation error ¢
when used on problems that are nonsymmetric. In fact, it is easy to see for a grid as sh
in Fig. 1, but with equal angle zoning, that if @2perturbation is applied to any given
I-line, thew direction calculated from Eg. (8) remains radial. Thus the gradient operator
not changed for this type of high spatial scale perturbation. We have noticed for proble
where the grid is allowed to become highly distorted, and where accuracy is lost anyw
that sometimes more code robustness in terms of runtime can be achieved with the oric
unmodified gradient operator, all else being equal.
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5.1.Conservation of momentumWe first demonstrate conservation of momentum fo
control volume differencing and then show that both the modified gradient operator ¢
area-weight differencing do not strictly conserve linear momentum. This is most ea:
done by considering pressure forces constructed with respect to the median mesh. Cor
the piece of forcé,S; in Fig. 2. This acts with a minus sign on poird’“and with a plus
sign on point @” for a control volume scheme. Thus, momentum conservation stated
the requirement that the sum of all nodal forces be equal to the applied boundary ft
is trivially satisfied for control volume differencing. Since the coordinate-line and medi
meshes are identical for control volume differencing the pressure forces can be comp
along the coordinate-line mesh just as well and momentum is still conserved. What
been shown is that momentum is conserved for a constant zone preRsums,long as
the associated zone is defined by a “closed” boundary, since then the total force due tc
pressure (but distributed amongst all of its defining pointB) i dS = 0. When we modify
the lengths; of the coordinate-line mesh to obtain symmetry the sum of these vectors ab
a given zone no longer add to zero. Therefore, the zone is not closed; momentum is tht
longer exactly conserved; and the new coordinate-line mesh is not equivalent to the me
mesh. A point that seems to have been missed by the originators of the various forms o
area-weight schemes is that for these schemes momentum conservation is also not sat
This is easily seen from the fact that in Fig. 2 the force on paihts' — Pyr Sz, while that
on point ‘a” is +Pyr,S;. The different factors ofr” break the momentum balance. The
new gradient operator also breaks the momentum balance with respect to the usual cc
volume scheme, where previously it was exact.

It is easy to measure the magnitude of this numerical error in the case where there
no applied boundary forces by computing the total linear momentum inzthdirection,
which is easily defined unambiguously in cylindrical geometry. To this end we define t
defect in linear momentum conservatiéh,,, as the sum over all points of the total force
in the z direction divided by the sum of its magnitude, viz.

Slm=> (Fp-2/> IFp-2I. (19)
p p

For the Lazarus problem shown in Fig. 3b that is run with the original, unmodified cont
volume differencing L ., ~ 10~%5 until the run terminates due to excessive grid distortion
For this problem run with control volume differencing using the modified gradient opera
or with area-weight differencing, both with equal angle zoning as given by Fig. 3c a
Fig. 3a, respectivelgL , ~ 102 for both schemes. With increased angular resolution thi
guantity decays in magnitude as the truncation error of a scheme with approximately sec
order accuracy. For unequal angle zoning, as shown in FigL4¢is somewhat larger for
either scheme. For the aspherical expansion proBleg~ 104 for both schemes shown.
Although the defect in momentum conservation is usually roughly equal in both scher
(by factors of three or so), in the Sedov blast wave problem [5, 17], where all the energ
initially concentrated in a single zone on an initially square gti¢h can be as large as a
few percentages at the early part of the run, decaying to much less that 1% at the end
area-weight differencing. In this instance it is much larger (10 or so) for the area-wei
scheme, relative to the control volume scheme with modified gradient operator. This is
to the fact that the initial energy is concentrated whergr is large; modified area-weight
differencing is more explicitly sensitive to this quantity than is modified control volum
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differencing, although it is the size of this term that largely determines the nonconserval
of momentum in both cases. The differences in results (density, pressure, etc.) between
two schemes and standard control volume differencing is still very small in this instan
where no symmetry relative to the grid orientation is present. We thus conclude that
lack of exact conservation of linear momentum, although somewhat paradoxical, does
cause serious damage to the results when symmetry is not present. In fact, it is cur
that this appears to be necessary in order to obtain good results when symmetry sh
be present or nearly so. That is, it seems to be necessary to violate conservation of li
momentum at truncation error levels in order to inhibit the production of totally unphysic
angular momentum that can completely destroy the solution.

6. CONCLUSIONS

In this work we have shown how the problem of exactly preserving numerically a on
dimensional symmetry, in atwo-dimensional coordinate system distinct from that symme
can be achieved for a wide range of initial grids, and without necessarily resorting to v
specialized finite difference schemes. It was shown that this could be attained throug
modification of the pressure gradient operator. This modification, motivated by a circle ¢
struction through three points, led to a very effective and simple to implement prescript
for slightly changing this operator to detect cylindrical and spherical symmetry in Cartes|
and cylindrical geometry, respectively, when present in the initial and boundary conditio
The effectiveness of this new gradient operator was shown with numerical examples.
problems without any symmetry it was shown that the new gradient operator produced \
little difference from the original form, thus demostrating that this prescription is useful f
perturbation studies.

APPENDIX A: FORCES DERIVING FROM A TENSOR

The procedure developed in Section 3 has been shown to be effective in preser
symmetry with pressure forces. Here we briefly discuss the case where the force is del
from the divergence of a tensdr,as occurs in solving problems involving material strength
The momentum equation in Lagrangian form is now givep@sg/dt = V- T, which written
in component form in two-dimensional, cylindrical geometry becomes

dor 0Ty 0Ty, QT — Ty
— = _ 20
Pt or "oz T r (20)

dUZ BT,Z aTzz Trz

Pat = ar Taz T

(21)

A tensor that gives rise to symmetric motion has components that transform from ¢
angular location to another along latine by means of a rotation matrix. This is equivalent
to the pressure being constant on a given side of eéink as shown in Fig. 1. The rotation
matrix that effects this transformation through an arbitrary agigie given by

__ | cosy  siny
C= {—sinw cosw] ’ (22)
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FIG.7. Unequal angle grid for force calculation as the divergence of a tensor. Teéhsarsd T  are defined
at centers of zones that lie to the left and right of the line labelléddnd below line 1.

where the matrixT that is acts upon is defined at zone center points whose coordina
are given as the average of the coordinates of the points that define the zone. If in t
dimensions the matriX is made diagonal at some location, say along the line labelfed “
in Fig. 7, with entries denoted bly; andT, along the diagonal with respect to the direction
of the unit vector defined as i Section 3, then this matrix when rotated through an angl
¥ is given byC—1TC. Using dyadic notation this has the form

1 (Ty co ¥ + T, Sir? ¥)doid (@) Sin2y )i |,
ciTCc = . (23)

(U5 ) sin@uyid  (Tysirt v + T co$ ¥,

where in this representatian = (1, 0) andw, = (0, 1).

Next, consider the symmetric situation as shown in Fig. 7, where the t&psbefined
in the center of the zone that lies on the lower left side of poitis obtained from Eq.
(23) by settingy = ¢/2; the tensofR is defined in the center of the zone lying to the
lower right side of this point and is obtained by setting= —6/2 in Eq. (23). From
the notation given in Fig. 7, the discrete force that arises from these two tensors ac
on point ‘c” in the case of Cartesian geometry (when the hoop stress terms in Egs. (:
(21) are set to zero) for control volume differencing of the derivative terms in Egs. (2
(21), denoted aky,, can be written a&g; = T. - (A2 — A3) + Tr - (A1 + Ag). Defin-
ing the vectorsA; = (al,al), A, = (a),al), andAs = (0,as) as shown in Fig. 7
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with respect to the directions andw, this equation for the force when expanded out in
full is

Fy) = {(T coS(¢/2) + TLsir(¢/2)ay + (T_Zn) (sin¢)azﬂ g
; (T—2n> (sing)al + (T sirP(¢/2) + T, cos?<¢/2))a2ﬂ i
__TH_TL . 1| o~ r12 52 17 A
—— | Ging)ag | (T} sirf(¢/2) + T cos(¢/2))ag |
[ - (T =T ] -
+ |(Tycos(0/2) + T, sirf(6/2)a; — <T> (sm@)al} i

+ |- (%) (sind)a) + (T, sir(6/2) + T, 0052(9/2))af] W)

— (Lf) (sine)as%} W+ [(Ty sif(@/2) + Ti cog(@/2)az |w1. (24)

From the preceeding equation we separate and rearrange all terms that are in the dire
w, , that is perpendicular to the symmetry directionahd which must therefore vanish if
symmetry is to be preserved. This yields

Fois = [(Tysir(¢/2) + T cos(¢/2)ay + (T sinf(0/2) + T, co(6/2))a; |
+ ag [Ty(sirP(8/2) — sirf(¢/2)) + TL(cog(9/2) — cos(¢/2))]

n (Tu _Z_TL) (a) sing — aj sing). (25)

The expression given by Eq. (25) allows a number of interesting limits to be examin
First, when we have only pressure forégs= T, = —P, then the last two lines on the
RHS of Eq. (25) vanish, while the first line reduces+®(ay + a;") so that all angular
factors have disappeared. As was noted in Section 3 and can be seen from Fig. 7, the le|
ai anday always have opposite signs; the procedure, given by Egs. (12), (13), makes tl
magnitudes equal when they would not be so otherwise and, thus, symmetry is obtaine
forces that arise from a symmetric distribution of pressure. Next, supposk that equal
angle zoning. Then fof, # T, itis seen that Eq. (25) vanishes if and onlgjf = —a;-
andal = al. This occurs only for a control volume scheme in Cartesian geometry or-
area-weight scheme in cylindrical geometry with equal angle zoning. In the latter case
hoop stress terms in Egs. (20), (21) that appear as momentum sources can be added
discrete force by defining the divisor™that appears in them at the zone centers and the
area weighting these terms to their surrounding dynamical points by the associated sub:
corner area. In this case symmetry will still be obtained [18].

For unequal angle zoning the terms in Eq. (25) do not cancel in any simply arran
manner. To remedy this situation we employ the following procedure. First, we utili
the symmetry directionw "as defined by Eq. (8), but only along lines that are assume
apriori to potentially form level lines of the symmetric solution [these ard tlirges of
Fig. (7)]. Then with respect to these lines only we modify the forces that arise fro
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the now assumed traceless ten$aon a manner completely analogous to that given by
Egs. (9-13) for the half-edge coordinate line vectors. Referring to Fig. (7) we d¢fiaed

FTR as forces that originate from the tensdfsandTr and act on point¢”. (In the case of
cylindrical geometry the hoop stress terms are included.) We next defipendF!  as
the components of these forces that are perpendicularwhérew is defined at point¢”

by Eq. (8) along linet”. These perpendicular forces are then averaged to defirteking
into account the fact that they lie in opposite directions. This can be expressed as

IS

FI,L = FI - (FI : )ﬁ)’
Flr=Fk— (Ff-0)w, (26)
FI=(FLL—-Flgr)/2
Next we construct the new forces that act on poaitffom adjacent zones on the same side
of a commori-line by using the newly defineféll along with the unchanged component of
the force in thew™direction. This yields for these new forces the result
FM

™™
FR

(FL-@)d +F1, (27)
(FR- )i —FL, (28)

where the superscriptM” indicates the modified forces that are actually employed in th
discrete from of the momentum equation.

The above procedure does not guarantee that symmetry will be preserved when
present in the spatial distribution of the ten$oFor this to be true it is required in addition
that both the acceleration and the heating rate be constant in magnitude aletigean
as discussed previously. We find in numerical simulations in two dimensions that for ci
trol volume differencing in Cartesian geometry or area-weight differencing in cylindric
geometry that the above procedure results in symmetry preservation to roundoff error
unequal angle initial zoning. This is in addition to the case of equal angle zoning where i
of course, unnecessary. In the case of control volume differencing in cylindrical geome
the magnitude of the acceleration alond dime is not found to be constant except for equal
angle initial zoning. In this instance it is observed that errors in symmetry arise slowly n
the “z" axis whereAr /r is of order unity. As a result symmetry is lost everywhere after
few hundreds of cycles.
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